
As machine studying (ML) analysis strikes towards large-scale fashions able to quite a few downstream duties, a shared understanding of a dataset’s origin, growth, intent, and evolution turns into more and more vital for the accountable and knowledgeable growth of ML fashions. Nonetheless, data about datasets, together with use and implementations, is commonly distributed throughout groups, people, and even time. Earlier this yr on the ACM Convention on Equity, Accountability, and Transparency (ACM FAccT), we printed Knowledge Playing cards, a dataset documentation framework aimed toward rising transparency throughout dataset lifecycles. Knowledge Playing cards are transparency artifacts that present structured summaries of ML datasets with explanations of processes and rationale that form the info and describe how the info could also be used to coach or consider fashions. At minimal, Knowledge Playing cards embrace the next: (1) upstream sources, (2) knowledge assortment and annotation strategies, (3) coaching and analysis strategies, (4) meant use, and (5) selections affecting mannequin efficiency.
In follow, two vital components decide the success of a transparency artifact, the power to determine the knowledge decision-makers use and the institution of processes and steerage wanted to accumulate that data. We began to discover this concept in our paper with three “scaffolding” frameworks designed to adapt Knowledge Playing cards to quite a lot of datasets and organizational contexts. These frameworks helped us create boundary infrastructures, that are the processes and engagement fashions that complement technical and useful infrastructure vital to speak data between communities of follow. Boundary infrastructures allow dataset stakeholders to search out widespread floor used to supply various enter into selections for the creation, documentation, and use of datasets.
At present, we introduce the Knowledge Playing cards Playbook, a self-guided toolkit for quite a lot of groups to navigate transparency challenges with their ML datasets. The Playbook applies a human-centered design method to documentation — from planning a transparency technique and defining the viewers to writing reader-centric summaries of complicated datasets — to make sure that the usability and utility of the documented datasets are nicely understood. We’ve created participatory actions to navigate typical obstacles in establishing a dataset transparency effort, frameworks that may scale knowledge transparency to new knowledge varieties, and steerage that researchers, product groups and corporations can use to provide Knowledge Playing cards that mirror their organizational ideas.
![]() |
| The Knowledge Playing cards Playbook incorporates the most recent in equity, accountability, and transparency analysis. |
The Knowledge Playing cards Playbook
We created the Playbook utilizing a multi-pronged method that included surveys, artifact evaluation, interviews, and workshops. We studied what Googlers wished to learn about datasets and fashions, and the way they used that data of their day-to-day work. Over the previous two years, we deployed templates for transparency artifacts utilized by fifteen groups at Google, and when bottlenecks arose, we partnered with these groups to find out applicable workarounds. We then created over twenty Knowledge Playing cards that describe picture, language, tabular, video, audio, and relational datasets in manufacturing settings, a few of which at the moment are out there on GitHub. This multi-faceted method supplied insights into the documentation workflows, collaborative information-gathering practices, data requests from downstream stakeholders, and evaluation and evaluation practices for every Google crew.
Furthermore, we spoke with design, coverage, and know-how consultants throughout the business and academia to get their distinctive suggestions on the Knowledge Playing cards we created. We additionally integrated our learnings from a collection of workshops at ACM FAccT in 2021. Inside Google, we evaluated the effectiveness and scalability of our options with ML researchers, knowledge scientists, engineers, AI ethics reviewers, product managers, and management. Within the Knowledge Playing cards Playbook, we’ve translated profitable approaches into repeatable practices that may simply be tailored to distinctive crew wants.
Actions, Foundations, and Transparency Patterns
The Knowledge Playing cards Playbook is modeled after sprints and co-design practices, so cross-functional groups and their stakeholders can work collectively to outline transparency with an eye fixed for real-world issues they expertise when creating dataset documentation and governance options. The thirty-three out there Actions invite broad, vital views from all kinds of stakeholders, so Knowledge Playing cards might be helpful for selections throughout the dataset lifecycle. We partnered with researchers from the Accountable AI crew at Google to create actions that may mirror concerns of equity and accountability. For instance, we have tailored Analysis Gaps in ML practices right into a worksheet for extra full dataset documentation.
![]() |
| Obtain readily-available exercise templates to make use of the Knowledge Playing cards Playbook in your group. |
We’ve shaped Transparency Patterns with evidence-based steerage to assist anticipate challenges confronted when producing clear documentation, provide greatest practices that enhance transparency, and make Knowledge Playing cards helpful for readers from completely different backgrounds. The challenges and their workarounds are primarily based on knowledge and insights from Googlers, business consultants, and tutorial analysis.
![]() |
| Patterns assist unblock groups with really helpful practices, warning towards widespread pitfalls, and steered options to roadblocks. |
The Playbook additionally consists of Foundations, that are scalable ideas and frameworks that discover basic facets of transparency as new contexts of information modalities and ML come up. Every Basis helps completely different product growth phases and consists of key takeaways, actions for groups, and useful sources.
Playbook Modules
The Playbook is organized into 4 modules: (1) Ask, (2) Examine, (3) Reply, and (3) Audit. Every module comprises a rising compendium of supplies groups can use inside their workflows to sort out transparency challenges that ceaselessly co-occur. Since Knowledge Playing cards have been created with scalability and extensibility in thoughts, modules leverage divergence-converge pondering that groups could already use, so documentation isn’t an afterthought. The Ask and Examine modules assist create and consider Knowledge Card templates for organizational wants and ideas. The Reply and Audit modules assist knowledge groups full the templates and consider the ensuing Knowledge Playing cards.
In Ask, groups outline transparency and optimize their dataset documentation for cross-functional decision-making. Participatory actions create alternatives for Knowledge Card readers to have a say in what constitutes transparency within the dataset’s documentation. These tackle particular challenges and are rated for various intensities and durations so groups can mix-and-match actions round their wants.
The Examine module comprises actions to determine gaps and alternatives in dataset transparency and processes from user-centric and dataset-centric views. It helps groups in refining, validating, and operationalizing Knowledge Card templates throughout a company so readers can arrive at affordable conclusions concerning the datasets described.
The Reply module comprises transparency patterns and dataset-exploration actions to reply difficult and ambiguous questions. Matters lined embrace getting ready for transparency, writing reader-centric summaries in documentation, unpacking the usability and utility of datasets, and sustaining a Knowledge Card over time.
The Audit module helps knowledge groups and organizations arrange processes to guage accomplished Knowledge Playing cards earlier than they’re printed. It additionally comprises steerage to measure and monitor how a transparency effort for a number of datasets scales inside organizations.
In Apply
A knowledge operations crew at Google used an early model of the Lenses and Scopes Actions from the Ask modules to create a personalized Knowledge Card template. Apparently, we noticed them use this template throughout their workflow until datasets have been handed off. They used Knowledge Playing cards to take dataset requests from analysis groups, tracked the varied processes to create the datasets, collected metadata from distributors liable for annotations, and managed approvals. Their experiences of iterating with consultants and managing updates are mirrored in our Transparency Patterns.
One other knowledge governance group used a extra superior model of the actions to interview stakeholders for his or her ML health-related initiative. Utilizing these descriptions, they recognized stakeholders to co-create their Knowledge Card schema. Voting on Lenses was used to rule out typical documentation questions, and determine atypical documentation wants particular to their knowledge kind, and vital for selections ceaselessly made by ML management and tactical roles inside their crew. These questions have been then used to customise current metadata schemas of their knowledge repositories.
Conclusion
We current the Knowledge Playing cards Playbook, a steady and contextual method to dataset transparency that intentionally considers all related supplies and contexts. With this, we hope to determine and promote practice-oriented foundations for transparency to pave the trail for researchers to develop ML programs and datasets which can be accountable and profit society.
Along with the 4 Playbook modules described, we’re additionally open-sourcing a card builder, which generates interactive Knowledge Playing cards from a Markdown file. You may see the builder in motion within the GEM Benchmark venture’s Knowledge Playing cards. The Knowledge Playing cards created have been a results of actions from this Playbook, wherein the GEM crew recognized enhancements throughout all dimensions, and created an interactive assortment device designed round scopes.
We acknowledge that this isn’t a complete resolution for equity, accountability, or transparency in itself. We’ll proceed to enhance the Playbook utilizing classes realized. We hope the Knowledge Playing cards Playbook can change into a sturdy platform for collaboratively advancing transparency analysis, and invite you to make this your individual.
Acknowledgements
This work was accomplished in collaboration with Reena Jana, Vivian Tsai, and Oddur Kjartansson. We need to thank Donald Gonzalez, Dan Nanas, Parker Barnes, Laura Rosenstein, Diana Akrong, Monica Caraway, Ding Wang, Danielle Smalls, Aybuke Turker, Emily Brouillet, Andrew Fuchs, Sebastian Gehrmann, Cassie Kozyrkov, Alex Siegman, and Anthony Keene for his or her immense contributions; and Meg Mitchell and Timnit Gebru for championing this work.
We additionally need to thank Adam Boulanger, Lauren Wilcox, Roxanne Pinto, Parker Barnes, and Ayça Çakmakli for his or her suggestions; Tulsee Doshi, Dan Liebling, Meredith Morris, Lucas Dixon, Fernanda Viegas, Jen Gennai, and Marian Croak for his or her help. This work wouldn’t have been attainable with out our workshop and examine individuals, and quite a few companions, whose insights and experiences have formed this Playbook.


