How would you arrive at a sound signature for validation with K=Z/S ?
Is there’s a relevant formulation?
Multiples of this instance are current on a singular pockets.
if a couple of set is required it applies.
observe: R doesn’t equal K
instance 1
R = cf9ee09bee9dd355f131a254f6f289ca13be0a55fc066ca5d4622eff48686bc8
S = 036aa045ba470076fb25d9983acdc65e50ca2122e0cf9bcd560ce2f16165f86a
Z = 91bd8426cb9da0fb47f3d5b37d10023902311e3e250634737e9f0844bcba7d25
K = f63935bdd21ffc5d3a14b651117a2b17e55a5a3ea5b0355e8b700637c6951141 <—–
Z/(s-r) ffb0995f11c36d2f58e7dc83ac55aca4940200edc65246037d1aeec94e24bc74
Z/S= f63935bdd21ffc5d3a14b651117a2b17e55a5a3ea5b0355e8b700637c6951141 <—–
R/S= 9312c2ca3b1c86517f1847c3aa32215cd3527c538cb23167b244b7ffab13a5dd
RS-ZS= c90630be3161a1e5c97fcc15bacdcf26ef2fd3759ed8523b158ffec02c64df6c
instance 2 IF required
R = fc6e3632898a2e1f5bd0d31d1410d71d7830d49f5e9d4ab9a61cb3ee811082ad
S = 003ec4cdc1a211837a3fb07efcff17f76fd373c8a4e106e36b0fbbe6096f45dd
Z = c9629af890b454f26ebea5bbb4a7de7448aa97f29531a929961f430c76194a33
K = c42a68beff9ab81b93d32e4a5b5233cf486371f1e87e69bb9cbb1c04606cf141 <—-
Z/(s-r) c42eb494f572f8445e60d816edcb9b0512ace379cc3fb35f2f92237513a2115e
Z/S= c42a68beff9ab81b93d32e4a5b5233cf486371f1e87e69bb9cbb1c04606cf141 <—-
R/S= 44be8251bf7ee6b87bca6d2d1689e860d77dc5aa78cc59ed8e3f38554a886695
RS-ZS= 68b9358aae4fb6598eca104b59bdc77dfec6a8f2d924e89568ed8a77979aa349
further relevant.
Thanks.
